

Bridged Di(alkyl- and 4,4,4-trifluorobutylimidazolium) Quaternary Salts Based on *p*-*tert*-Butylcalix[4]arene

Chuan-Ming Jin and Jean'ne M. Shreeve*

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

Received July 20, 2004

Di(alkyl- and 4,4,4-trifluorobutylimidazolium) quaternary halides of *p*-tert-butylcalix[4]arene, **5a**–**8a** and **11a**, were prepared and characterized. Metathetical reactions of these compounds with $LiN(SO_2CF_3)_2$ and KPF_6 in methanol and water gave the corresponding new quaternary salts **5b**–**8b** and **11b** and **5c**–**8c** and **11c**, respectively, with high thermal stabilities. Compounds **5a**–**d**, **6b**, and **11a**–**c** exhibit melting points <100 °C. On the basis of ¹H NMR and ¹³C NMR spectral measurements, all of the new quaternary calix[4]arene salts were found to exist in a cone conformation. ¹H NMR titration experiments and electrospray MS spectra support the encapsulation of K⁺ in the ionophoric cavity of **11c**.

In recent years, ionic liquids have attracted considerable interest as substitutes for volatile organic solvents in synthetic chemistry,¹ metal ion extraction,² capture of acidic gases, etc.³ Ionic liquids often consist of an organic cation such as alkylpyridinium, dialkylimidazolium, or dialkyltriazolium, with an appropriate anion, such as halide- or fluorine-containing inorganic anions. By definition, ionic liquids melt <100 °C,⁴ are thermally stable liquids over a wide temperature range, have negligible vapor pressure, are nonflammable, and have high loading capacity. These properties make them potentially useful in a large variety of industrial processes.⁴

Bis(imidazolium) and triimidazolium quaternary salts have received considerable attention in N-heterocyclic carbene chemistry,⁵ anion recognition,⁶ and catalytic synthesis.⁷ For example, the synthesis and full characterization of some novel tris(carbene) ligand systems based on imidazolium salts and their corresponding dinuclear metal complexes were

- (a) Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026– 3027. (b) Wasserscheid, P.; Drieben-Holscher, B.; Hal, R.; Steffens, H. C.; Zimmermann, J. Chem. Commun. 2003, 2038–2039.
- (2) (a) Dietz, M. L.; Dzielawa, J. A. *Chem. Commun.* 2001, 2124–2125.
 (b) Wei, G. T.; Yang, Z.; Chen, C. J. *Anal. Chim. Acta* 2003, 488, 183–192.
- (3) Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., Jr. J. Am. Chem. Soc. 2002, 124, 926–927.
- (4) For recent reviews, see: (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083. (b) Wasseerscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789. (c) Sheldon, R. A. Chem. Commun. 2001, 2399–2407. (d) Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221–227. (e) Wasserscheid, P., Welton, T., Eds. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, Germany, 2003. (f) Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A.; Plaquevent, J. Tetrahedron: Asymmetry 2003, 14, 3081–3093.

7532 Inorganic Chemistry, Vol. 43, No. 23, 2004

described.⁸ A series of new bridging, chelating, and pincer N-heterocyclic carbene complexes of Rh^I, Rh^{III}, and Pd^{II} based on bis(imidazolium) salts which used pyridinyl and benzyl as linking units, and their effective applications for the Heck reaction, were reported.⁹ The preparation of new polyimidazolium quaternary salts with special characteristics is still a challenging field.

Calix[4]arenes are a class of phenol—formaldehyde cyclic oligomers which can be functionalized in various ways at the phenolic hydroxyl groups or at the *para* position of the phenolic rings forming unique three-dimensional structures.¹⁰ They are good building blocks or molecular scaffolds for the construction of some large supramolecular systems with defined structure or functional groups. Their derivatives have been widely used for recognition of metal ions, neutral molecules, and anions.¹¹ Calix[4]arene-crown derivatives also have good extraction ability and selectivity for different alkali metal ions.¹² They can be used as chromoionophoric systems for some metal ions.¹³

10.1021/ic049041c CCC: \$27.50 © 2004 American Chemical Society Published on Web 10/13/2004

 $[\]ast$ Author to whom correspondence should be addressed. E-mail: jshreeve@uidaho.edu.

 ^{(5) (}a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39–91. (b) Herrmann, W. A.; Köcher, C. Angew. Chem., Int. Ed. 1997, 36, 2162–2187.

^{(6) (}a) Yun, S.; Ihm, H.; Kim, H. G.; Lee, C. W.; Indrajit, B.; Oh, K. S.; Gong, Y. J.; Lee, J. W.; Yoon, J.; Lee, H. C.; Kim, K. S. J. Org. Chem. 2003, 68, 2467–2470. (b) Yuan, Y.; Gao, G.; Jiang, Z. L.; You, J. S.; Zhou, Z. Y.; Yuan, D. Q.; Xie, R. G. Tetrahedron 2002, 58, 8993–8999.

⁽⁷⁾ Omotowa, B. A.; Shreeve, J. M. Organometallics 2004, 23, 783-791.

 ^{(8) (}a) Hu, X.; Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2003, 125, 12237-12245. (b) Hu, X.; Castro-Rodriguez, I.; Meyer, K. Organometallics 2003, 22, 3016-3018. (c) Hu, X.; Castro-Rodriguez, I.; Meyer, K. Organometallics 2003, 22, 612-614.

 ^{(9) (}a) Poyatos, M.; Márquez, F.; Peris, E.; Claver, C.; Fernandez, E. New J. Chem. 2003, 27, 425–431. (b) Poyatos, M.; Mas-Marzá, E.; Meta, J. A.; Sanaú, M.; Peris, E. Eur. J. Inorg. Chem. 2003, 1215–1221.

Scheme 1^{*a*}

^{*a*} Reagents and conditions: (i) Br(CH₂CH₂)_{*n*}Br (n = 1, 2), NaH/DMF, 80 °C; (ii) *N*-alkylimidazolium; (iii) imidazole, NaH/THF, reflux; (iv) CF₃CH₂CH₂CH₂I, CH₃CN, 65 °C; (v) CH₃OH + H₂O (10:1), LiN(CF₃SO₂)₂ or KPF₆ or NaBF₄.

On the basis of our earlier work,¹⁴ we now describe a series of di(alkyl- and 4,4,4-trifluorobutyl)imidazolium-substituted *p-tert*-butylcalix[4]arene and *p-tert*-butylcalix[4]arene-crown-5 quaternary salts. Their thermal properties and coordination with potassium ion were also examined. To the

best of our knowledge, there are no earlier studies of di(alkylor polyfluoroalkylimidazolium) derivatives of *p-tert*-butylcalix-[4]arene.

Results and Discussion

All quaternary salts were prepared from 1 and 9 via the synthetic routes displayed in Schemes 1 and $2^{.15}$ To obtain compounds 2 or 3, an excess of 1,2-dibromoethane or 1,4-dibromobutane was used with 1 in the presence of NaH and DMF. Following flash column chromatography, 2 or 3 was found in 43 or 52% yield, respectively. Each was subse-

⁽¹⁰⁾ For books on calixarenes, see: (a) Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. (b) Gutsche, C. D. Calixarenes Revisited: Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, U.K., 1998. (c) Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J., Böhmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.

^{(11) (}a) Dudič, M.; Lhotăk, P.; Stibor, I.; Lang, K.; Proškovă, P. Org. Lett.
2003, 5, 149–152. (b) Dorta, R.; Shimon, L. J. W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. Inorg. Chem. 2003, 42, 3160–3167.

⁽¹²⁾ Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1990, 112, 6979–6985.

⁽¹³⁾ Kim, J. Y.; Kim, G.; Kim, C. R.; Lee, S. H.; Lee, J. H.; Kim, J. S. J. Org. Chem. 2003, 68, 1933–1937.

^{(14) (}a) Mirzaei, Y. R.; Twamley, B.; Shreeve, J. M. J. Org. Chem. 2002, 67, 9340–9345. (b) Singh, R. P.; Shreeve, J. M. Inorg. Chem. 2003, 42, 7416–7421. (c) Kim, J.; Singh, R. P.; Shreeve, J. M. Inorg. Chem. 2004, 43, 2960–2966.

 ^{(15) (}a) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955–4962. (b) Zhong, Z. L.; Chen, Y. Y.; Lu, X. R. Synth. Commun. 1996, 26, 307–313.

^a Reagents and conditions: (i) Br(CH₂)₄Br, NaH/DMF, 80 °C; (ii) N-butylimidazolium; (iii) CH₃OH + H₂O (10:1), LiN(CF₃SO₂)₂ or KPF₆.

quently quaternized with *N*-methyl- or *N*-butylimidazole under neat conditions in sealed tubes. After 24 h at 60 °C, **3** and *N*-alkylimidazole reacted smoothly to form the quaternary salt essentially quantitatively. However, when **2** and *N*-butylimidazole were used, a higher temperature (~110 °C) and a longer reaction time (~48 h) were required to prepare **5a**. The ¹H NMR and ¹³C NMR spectra of **5a** showed doublets at ~ δ 4.30 and 3.10 ppm with a coupling constant, J = 12.6 Hz, in the former spectra. In the latter spectra, there is a singlet at ~ δ 31 ppm which is assigned to the bridging methylene group in *p-tert*-butylcalix[4]arene.¹⁶

To take advantage of the interesting properties and potential applications that polyfluoroalkyl quaternary salts bring to the field of ionic liquids,¹⁷ the 4,4,4-trifluorobutyl-quaternized salt of **4** was also prepared. Compound **4** was obtained by reaction of **3** and imidazole in the presence of sodium hydride with THF as solvent at reflux for 36 h. The isolated yield of the **4** is 62%. Then **4** was quaternized with 4,4,4-trifluorobutyl iodide in acetonitrile in a sealed tube for 20 h at 65 °C to form **8a**. A typical AB pattern was observed for the methylene bridge ArCH₂Ar protons as doublets with chemical shifts centered at δ 4.36 and 3.15 ppm (J = 12.6 Hz) in the ¹H NMR spectrum assigned to the axial and equatorial protons, respectively.

Calix[4]arene-crown-5 derivatives have been shown to have high extraction abilities and selectivities for different alkali metal cations, when dissolved in chloroform. Recently, ionic liquids as a new medium for extraction studies have attracted a lot of attention.¹⁸ To obtain calix[4]arene-crown-5 derivatives that would be miscible with some known ionic liquids, **11a** was prepared by the reaction of **10** and *N*-butylimidazole under neat conditions at 80 °C for 48 h (Scheme 2). Compound **10** was prepared via a method similar to that used for **2** and **3**.

Metathesis of **5a**, **6a**, **7a**, **8a**, and **11a** with two metal salts (LiN(SO₂CF₃)₂ or KPF₆) led to the formation of some new quaternary salts in excellent isolated yields in methanol and water (10:1) at 25 °C. Compound **5a** also was reacted with NaBF₄ to form **5d**. All of the compounds (**5b**-**8b**, **11b**, **5c**-**8c**, **11c**, and **5d**) exist in a cone conformation as determined from their ¹H NMR and ¹³C NMR spectra. The characteristic signal corresponding to a quaternary halide with a chemical shift between δ 10.69 and 10.20 ppm for the proton

Table 1. Phase Transition and Thermal Decomposition Temperatures of Quaternary Salts

C	5				
compd	$T_{\rm m}{}^a$	$T_{\rm d}{}^b$	compd	$T_{\rm m}{}^a$	$T_d{}^b$
5a	85	298	5b	52	343
5c	80	355	5d	87	358
6a	159	295	6b	51	385
6c	107	405	7a	243	295
7b	199	357	7c	291	370
8a	203	290	8b	130	357
8c	274	382	11a	72	294
11b	38	361	11c	56	372

^a Phase transition temperature, °C. ^b Thermal degradation, °C.

in the imidazolium ring has shifted upfield to δ 8.46–9.08 ppm. The melting points and decomposition temperatures for all quaternary salts as determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) are given in Table 1. All quaternary salts were found to be thermally stable and to have high decomposition temperatures ($T_{\rm d} > 290$ °C). The hexafluorophosphate salts were more stable thermally than the bis(trifluoromethanesulfonyl)amide salts or halides. Compounds 5a-d, 6b, and 11a-c have melting points below 100 °C and, therefore, can be regarded as ionic liquids. While the different R groups influence the melting points to some extent, this does not occur in a regular fashion. As is to be expected, in general the melting points of the quaternary salts decrease when the halide anions are exchanged with NTf₂⁻ and PF₆⁻ anions.¹⁹ The 4,4,4-trifluorobutyl group was introduced into 4 to form the quaternary iodide, 8a, which was metathesized with $LiN(SO_2CF_3)_2$ and KPF_6 to give **8b** and **8c**, respectively. The melting points increased vis-à-vis the nonfluorinated butyl compounds.

While **7a**, **8a**, and **11a** were only partially miscible in methylene chloride, chloroform, and acetone at 25 °C, all other quaternary salts exhibited good solubility in methylene chloride, chloroform, acetone, ether, ethyl acetate, acetoni-trile, and methanol.

- (17) Singh, R. P.; Winter, R. W.; Gard, G. L.; Gao, Y.; Shreeve, J. M. Inorg. Chem. 2003, 42, 6142–6146.
- (18) Luo, H.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C.; Holbrey, J. D.; Bridges, N. J.; Rogers, R. D. Anal. Chem. 2004, 76, 3078–3083.
- (19) Singh, R. P.; Manandhar, S.; Shreeve, J. M. Synthesis 2003, 10, 1579– 1585.

⁽¹⁶⁾ Jaime, C.; Mendoza, J. D.; Prados, P.; Nieto, P. M.; Sánchez, C. J. Org. Chem. 1991, 56, 3372–3376.

Figure 1. 1 H NMR spectra (300 MHz, CD₃COCD₃) of (a) 11c and (b) 11c and 1 equiv of KSCN.

The quaternary salts 11a-11c also show good solubility in [BMIM]PF₆.

To learn about the extractive interactions of 11c with alkali metal salts, ¹H NMR titration experiments were carried out. In Figure 1 are shown the ¹H NMR spectra of pure **11c** (a) and 11c in the presence of an equivalent amount of KSCN (b) in acetone- d_6 . The signals assigned to ArH in the calixarene have shifted downfield from δ 7.25 and 6.55 ppm to δ 7.34 and 7.20 ppm with the distance between these two peaks decreasing markedly suggesting additional deshielding arising from the presence of an electron-withdrawing species, such as a metal ion. The signals for $-C(CH_3)_3$ have shifted from δ 1.37 and 0.86 ppm to δ 1.22 and 1.09 The axial methylene protons in ArCH₂Ar at δ 3.20 ppm (J = 12.6 Hz) have shifted downfield to δ 3.48 ppm which supports greater deshielding arising from an electron-withdrawing species. The signals of the equatorial methylene protons are overlapped with other methylene protons in the polyether chain or N-alkyl chain. This supports the presence of an ionic species such as K⁺.

¹H NMR titration experiments using **11c** and 1 equiv of NaSCN caused no change in the proton spectra, which clearly indicated that **11c** has a higher selectivity and stronger binding ability with K^+ than with Na⁺. To exclude the possibility of anion exchange between PF₆⁻ and SCN⁻, a metathesis reaction of **11c** with KSCN in methanol was also carried out. Results indicated that anion exchange did not occur. It was concluded that the change in the ¹H NMR spectrum was derived from **11c** encapsulated with K⁺ in the polyether ionophoric cavity.²⁰

The results obtained by ESI-MS (positive ion mode) confirmed this conclusion. The spectrum of **11c** shows the cation base peak at m/z 582.1 belonging to the [**11c** - 2PF₆⁻]

²⁺ species, together with another peak with a much lower intensity at m/z 1310.1 for the [**11c** - PF₆⁻]⁺ species. The spectrum of an equimolar solution of **11c** and KSCN shows the base peak at m/z 630.9 which confirmed the presence of the [**11c** + KSCN - 2PF₆⁻]²⁺ species. There with two other major peaks, one at m/z 1406.7 and the other one at m/z401.6, corresponding to [**11c** + KSCN - PF₆⁻]⁺ and [**11c** + K⁺ - 2PF₆⁻]³⁺ species, respectively.

Conclusion

Quaternary salts containing di(alkyl- and 4,4,4-trifluorobutyl imidazolium)-substituted *p-tert*-butylcalix[4]arene and *p-tert*-butylcalix[4]arene-crown-5 as the cationic nuclei were prepared and characterized. These new salts have high thermal stabilities and good solubilities in many solvents. Some of them, based on melting point, can be classified as ionic liquids. It is anticipated they will have further applications in *N*-carbene chemistry and extraction separation chemistry.

Experimental Section

All anhydrous solvents were treated by standard methods. The chemicals were obtained commercially from Aldrich, Acros, Lancaster, or Synquest. Silica gel (0.060–0.200 mm, pore diameter ~ 4 nm) was used for column chromatography, and a standard Schlenk line system was used for some reactions. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker AMX spectrometer at 300, 75, and 282 MHz, respectively. Chemical shifts are reported in ppm relative to the appropriate standard, CFCl₃ for ¹⁹F and TMS for ¹H and ¹³C NMR spectra. For reasons of clarity and to reduce

⁽²⁰⁾ Arnaud-Neu, F.; Ferguson, G.; Fuangswasdi, S.; Notti, A.; Pappalardo, S.; Parisi, M. F.; Petringa, A. J. Org. Chem. 1998, 63, 7770–7779.

space, the name calix[4]arene was used throughout instead of the IUPAC name:

Pentacyclo[19.3.1.1.^{3,7}1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13-(27),15,17,19(26),21,23-dodecane. DSC data were recorded by heating from 20 to 450 °C at 10 °C/min using a TA Instrument TA10 differential scanning calorimeter equipped with autocool and calibrated using indium. Thermogravimetric analysis (TGA) measurements were made using a TA instrument TA50. Samples were heated at 10 °C/min from 25 to 500 °C in a dynamic nitrogen atmosphere. Elemental analyses were performed at SIOC, Shanghai, China.

25,27-Bis(bromobutoxy)-26,28-dipropoxy-5,11,17,23-tetratert-butylcalix[4]arene (3). A suspension of 60% NaH (240 mg, 10 mmol) and 1 (732 mg, 1.0 mmol) was stirred for 30 min at 25 °C in dry DMF (30 mL). Then 1,4-dibromobutane (4.32 g, 20 mmol) was added slowly and the mixture was stirred at 80 °C for 2 days. After cooling, it was filtered and the solvent removed in vacuo. The residue was acidified with 1 N HCl and extracted with methylene chloride (30 mL). The organic layer was washed with water and dried over anhydrous MgSO₄. After evaporation of the solvent, the residue was subjected to flash column chromatography (silica gel, CH₂Cl₂) to give a white solid: 520 mg (51.8% yield); mp 170 °C; ¹H NMR (CDCl₃) δ 6.85 (s, 4H, ArH), 6.77 (s, 4H, ArH), 4.42 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 3.94 (t, J = 7.2 Hz, 4H, $-OCH_2CH_2-$), 3.84 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 3.54 (t, J = 6.7 Hz, 4H, $-CH_2CH_2Br$), 3.16 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.16 (m, 4H, -CH₂CH₂CH₃), 2.05 (m, 8H, -CH₂CH₂CH₂Br), 1.14 (s, 18H, -CH₃), 1.06 (s, 18H, -CH₃), 1.03 $(t, J = 7.5 \text{ Hz}, 6\text{H}, -C\text{H}_2\text{CH}_3); {}^{13}\text{C} \text{ NMR} \delta 153.5, 153.4, 144.5,$ 144.2, 133.9, 133.5, 125.0, 124.9, 76.9, 74.0, 33.8, 33.7, 33.6, 31.5, 31.4, 31.0, 29.7, 29.0, 23.5, 10.4. Anal. Calcd for C₅₈H₈₂Br₂O₄: C, 69.85; H, 8.24. Found: C, 70.14; H, 8.25.

25,27-Bis(bromoethoxy)-26,28-dipropoxy-5,11,17,23-tetra-*tert***-butylcalix[4]arene (2).** This compound was prepared according to the same procedure as for **3**, except the reaction time is 4 days: 42.6% yield; mp 214 °C; ¹H NMR (CDCl₃) δ 7.15 (s, 4H, ArH), 6.49 (s, 4H, ArH), 4.36 (d, J = 12.7 Hz, 4H, ArCH₂Ar), 4.31 (t, J = 7.2 Hz, 4H, $-\text{OCH}_2\text{CH}_2-$), 4.03 (t, J = 7.6 Hz, 4H, $-\text{OCH}_2\text{CH}_2-$), 3.70 (t, J = 6.7 Hz, 4H, $-\text{CH}_2\text{CH}_2\text{Br}$), 3.20 (d, J = 12.7 Hz, 4H, ArCH₂Ar), 1.98 (m, 4H, $-\text{CH}_2\text{CH}_2$), 1.36 (s, 18H, $-\text{CH}_3$), 1.11 (t, J = 7.5 Hz, 6H, $-\text{CH}_2\text{CH}_3$), 0.85 (s, 18H, $-\text{CH}_3$); ¹³C NMR δ 153.5, 152.1, 145.7, 144.3, 135.3, 131.7, 125.6, 124.6, 77.8, 73.7, 34.1, 33.6, 31.7, 31.1, 31.0, 29.6, 23.6, 10.7. Anal. Calcd for C₅₄H₇₄Br₂O₄: C, 68.49; H, 7.88. Found: C, 68.35; H, 7.87.

25,27-Bis(bromobutoxy)-5,11,17,23-tetra-tert-butylcalix[4]arene-crown-5 (10). A suspension of 60% of NaH (170 mg, 4 mmol) and 9 (500 mg, 0.62 mmol) was stirred for 30 min at 25 °C in dry DMF (30 mL). Then 1,4-dibromobutane (2.16 g, 0.1 mol) was added slowly and the mixture stirred at 80 °C for 3 days. After cooling, it was filtered and the solvent was removed in vacuo. The residue was acidified with 1 N HCl and extracted with methylene chloride. The organic layer was washed with water and dried over anhydrous MgSO₄. After the solvent was removed, the residue was subjected to flash column chromatography (silica gel, CH₂Cl₂ + $CH_3COOC_2H_5 = 4:1$) to obtain the product: 300 mg (yield 44.1%); mp 214 °C; ¹H NMR (CDCl₃) δ 7.14 (s, 4H, ArH), 6.46 (s, 4H, ArH), 4.35 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 4.30 (m, 4H, $-OCH_2CH_2-$), 4.23 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 3.85 (bs, 4H, -CH2CH2), 3.78 (bs, 8H, -OCH2CH2O-), 3.53 (bs, 4H, -CH₂CH₂Br), 3.17 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.13 (bs, 8H, -CH₂CH₂CH₂Br), 1.36 (s, 18H, -CH₃), 0.83 (s, 18H, -CH₃); ¹³C NMR δ 154.8, 152.2, 145.1, 144.2, 135.3, 131.6, 125.6, 124.5, 74.8,

72.6, 71.2, 70.4, 34.1, 33.7, 33.6, 31.7, 31.1, 30.9, 29.6, 29.2. Anal. Calcd for $C_{60}H_{84}Br_2O_7$: C, 66.90; H, 7.86. Found: C, 67.13; H, 7.72.

General Procedure for the Preparation of Compounds 5a, 6a, 7a, and 11a. The corresponding *p*-tert-butylcalix[4]arene bromide derivatives (2, 3, or 10) (0.1 mmol) and *N*-alkylimidazole (2.0 mmol) were mixed in a Pyrex tube and cooled to -196 °C. Dinitrogen was introduced, the tube was sealed, and the reaction mixture was heated at 60 or 110 °C depending on the reactants for 24 or 48 h. The reaction mixture was subjected to flash column chromatography to obtain a white solid.

25,27-Bis[4-(3-butylimidazolium-1-yl)ethoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene dibromide (5a): $CH_2Cl_2 + CH_3OH = 10:1$; yield 74%; mp 85 °C; ¹H NMR (CDCl₃) δ 10.20 (s, 2H, -NCHN-), 7.71 (s, 2H, -NCHCHN-), 7.20 (s, 2H, -NCHCHN-), 7.04 (s, 4H, ArH), 6.34 (s, 4H, ArH), 4.86 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.57 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 4.33 (t, J = 6.7 Hz, 4H, $-NCH_2CH_2-$), 4.08 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 3.68 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N_-$), 3.08 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 1.83 (m, 4H, -CH₂CH₂CH₂), 1.74 (m, 4H, -CH₂CH₂CH₂), 1.33 (m, 4H, -CH₂CH₂CH₂), 1.28 (s, 18H, -CH₃), 0.88 (m, 12H, -CH₂CH₃), 0.71 (s, 18H, -CH₃); ¹³C NMR δ 151.5, 151.4, 146.3, 144.2, 136.5, 135.1, 130.9, 125.6, 124.2, 122.6, 121.9, 77.5, 70.3, 49.5, 48.4, 33.8, 33.2, 31.8, 31.3, 30.9, 30.6, 23.2, 19.1, 13.2, 10.2. Anal. Calcd for C₆₈H₉₈Br₂N₄O₄•3H₂O: C, 65.37; H, 8.39; N, 4.48. Found: C, 64.93; H, 8.06; N, 4.56.

25,27-Bis[4-(3-butylimidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene dibromide (6a): $CH_2Cl_2 + CH_3OH = 20:1$; yield 78%; mp 159 °C; ¹H NMR $(CDCl_3) \delta 10.69 (s, 2H, -NCHN-), 7.56 (s, 2H, -NCHCHN-),$ 7.35 (s, 2H, -NCHCHN-), 7.09 (s, 4H, ArH), 6.49 (s, 4H, ArH), 4.56 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.38 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 4.36 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 4.06 (t, J = 6.7 Hz, 4H, $-NCH_2CH_2-$), 3.72 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N-$), 3.14 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.12 (m, 4H, -CH₂CH₂CH₂), 2.07 (m, 4H, -CH₂CH₂CH₂), 1.94 (m, 12H, $-CH_2CH_2CH_2$), 1.33 (s, 18H, $-CH_3$), 1.10 (t, J = 3.5 Hz, 6H, $-CH_2CH_3$), 0.98 (t, J = 7.5 Hz, 6H, $-CH_2CH_3$), 0.86 (s, 18H, $-CH_3$; ¹³C NMR δ 153.8, 152.4, 145.1, 144.0, 137.1, 135.2, 131.9, 125.4, 124.4, 122.3, 121.8, 73.5, 49.9, 49.8, 33.9, 33.5, 32.0, 31.6, 31.3, 31.1, 31.0, 27.4, 26.6, 23.6, 19.5, 13.4, 10.9. Anal. Calcd for C₇₂H₁₀₆Br₂N₄O₄•6H₂O: C, 63.61; H, 8.75; N, 4.22. Found: C, 63.52; H, 8.37; N, 4.58.

25,27-Bis[**4-(3-methylimidazolium-1-yl)butoxy**]-**26,28dipropoxy-5,11,17,23-tetra-***tert***-butylcalix**[**4**]arene dibromide (**7a**): CH₂Cl₂ + CH₃OH = 2:1; yield 74%; mp 243 °C; ¹H NMR (CD₃COCD₃) δ 10.44 (s, 2H, -NCHN-), 8.17 (s, 2H, -NCHCHN-), 7.91 (s, 2H, -NCHCHN-), 7.13 (s, 4H, ArH), 6.65 (s, 4H, ArH), 4.68 (t, *J* = 7.6 Hz, 4H, -OCH₂CH₂-), 4.44 (d, *J* = 12.4 Hz, 4H, ArCH₂Ar), 4.14 (s, 6H, NCH₃), 4.07 (t, *J* = 6.7 Hz, 4H, -OCH₂CH₂-), 3.76 (t, *J* = 7.2 Hz, 4H, -CH₂CH₂N-), 3.17 (d, *J* = 12.4 Hz, 4H, ArCH₂Ar), 2.06 (m, 8H, -CH₂CH₂CH₂), 1.96 (m, 4H, -CH₂CH₂CH₂), 1.30 (s, 18H, -CH₃), 1.08 (t, *J* = 3.5 Hz, 6H, -CH₂CH₃), 0.93 (s, 18H, -CH₃); ¹³C NMR δ 155.1, 153.7, 145.4, 144.5, 138.6, 135.9, 133.3, 126.2, 125.4, 124.2, 123.4, 78.1, 74.9, 50.2, 36.7, 34.5, 34.2, 31.9, 31.6, 31.5, 28.2, 27.6, 24.3, 11.2. Anal. Calcd for C₆₆H₉₄Br₂N₄O₄: C, 58.27; H, 8.12; N, 4.60. Found: C, 58.61; H, 7.90; N, 4.29.

25,27-Bis[4-(3-butylimidazolium-1-yl)butoxy]-5,11,17,23-tetra*tert*-**butylcalix[4]arene dibromide(11a):** CH₂Cl₂ + CH₃OH = 1:1; yield 72%; mp 72 °C; ¹H NMR (CDCl₃) δ 10.66 (s, 2H, -NCHN-), 8.08 (s, 2H, -NCHCHN-), 7.40 (s, 2H,

Quaternary Salts Based on p-tert-Butylcalix[4]arene

-NCHCHN-), 7.05 (s, 4H, ArH), 6.99 (s, 4H, ArH), 4.62 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 4.37–4.03 (m, 28H), 3.33 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.03 (m, 8H, -CH₂CH₂CH₂), 1.90 (m, 4H, -CH₂CH₂CH₂), 1.37 (m, 4H, -CH₂CH₂CH₂), 1.15 (s, 18H, -CH₃), 1.09 (s, 18H, -CH₃), 0.96 (t, J = 7.4 Hz, 6H, -CH₂CH₃); ¹³C NMR δ 150.7, 149.0, 147.7, 147.5, 137.0, 134.2, 125.8, 123.3, 121.8, 121.5, 116.5, 77.3, 71.4, 69.9, 69.7, 49.7, 49.3, 34.1, 34.0, 32.2, 31.3, 31.2, 30.7, 26.9, 25.9, 25.6, 19.5, 13.5. Anal. Calcd for C_{74H108}Br₂N₄O₇ + 4H₂O: C, 63.60; H, 8.37; N, 4.01. Found: C, 63.58; H, 8.35; N, 3.84.

25,27-Bis[4-(1-imidazolium)butoxy]-26, 28-dipropoxy-5,11,-17,23-tetra-tert-butylcalix[4]arene (4). To a solution of NaH (50 mg, 1.2 mmol) in THF (10 mL), the solution of imidazolium (23 mg, 0.33 mmol) in THF was added slowly (10 mL) at 0 °C. The mixture was stirred at 25 °C for 1 h, a solution of 3 (300 mg, 0.3 mmol) in THF (10 mL) was added, and the mixture was refluxed for 36 h. It was filtered to remove the solvent. The residue was acidified with 1 N HCl (10 mL), washed with water, and subjected to flash column chromatography ($CH_2Cl_2 + CH_3OH = 20:1$) to obtain a white solid: 180 mg (yield 61.6%); mp 88 °C; ¹H NMR (CDCl₃) & 7.50 (s, 2H, -NCHN-), 7.10 (s, 2H, -NCHCHN-), 6.93 (s, 2H, -NCHCHN-), 6.85 (s, 4H, ArH), 6.74 (s, 4H, ArH), 4.36 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.01 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 3.86 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 3.82 (t, J = 7.9 Hz, 4H, $-CH_2CH_2N-$), 3.14 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 1.98 (m, 12H, -CH₂CH₂CH₂), 1.14 (s, 18H, -CH₃), 1.06 (s, 18H, $-CH_3$), 0.99 (t, J = 7.5 Hz, 6H, $-CH_2CH_3$); ¹³C NMR δ 153.6, 152.9, 144.5, 144.4, 136.9, 133.8, 133.2, 129.6, 125.0, 124.9, 118.6, 76.7, 46.9, 33.8, 33.7, 31.4, 31.3, 31.0, 28.1, 27.3, 10.3. Anal. Calcd for C₆₄H₈₈N₄O₄•H₂O: C, 77.22; H, 9.11, N, 5.63. Found: C, 77.66; H, 9.00, N, 5.61.

25,27-Bis[4-(3-(4,4,4-trifluorobutyl)imidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene Diiodide (8a). To a solution of 4 (200 mg, 0.2 mmol) in acetonitrile (1.5 mL) in a Pyrex tube was added 4,4,4-trifluorobutyl iodide (238 mg, 10 mmol). It was sealed and heated to 65 °C for 20 h. After cooling, the solvent was removed, and the residue was washed with a dilute solution of Na₂S₂O₃ (160 mg, 1 mmol), which was extracted with CH₂Cl₂. It was subjected to flash column chromatography ($CH_2Cl_2 + CH_3OH = 20:1$) to get a white solid: 245 mg (yield 82.3%); mp 203 °C; ¹HNMR (CDCl₃) δ 10.44 (s, 2H, -NCHN-), 7.48 (s, 2H, -NCHCHN-), 7.39 (s, 2H, -NCHCHN-), 7.11 (s, 4H, ArH), 6.48 (s, 4H, ArH), 4.54 (m, 8H, $-OCH_2CH_2-$), 4.36 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 4.05 (t, J = 6.7 Hz, 4H, -NCH₂CH₂-), 3.71 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N-$), 3.15 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.32 (m, 12H, -CH₂CH₂CH₂), 2.15 (m, 4H, -CH₂CH₂CH₂), 1.92 (m, 4H, $-CH_2CH_2CH_2$), 1.33 (s, 18H, $-CH_3$), 1.08 (t, J = 3.5 Hz, 6H, -CH₂CH₃); 0.85 (s, 18H, -CH₃); ¹³C NMR δ 154.6, 152.9, 145.8, 144.7, 138.0, 136.1, 132.5, 126.2, 125.1, 122.7, 122.4, 127.2 (q, J = 274.8 Hz, CH₂CF₃), 78.2, 74.2, 51.1, 49.1, 34.7, 34.2, 32.3, 31.8, 31.7, 31.3 (q, *J* = 29.3 Hz, CH₂CF₃), 27.6, 27.3, 24.5, 23.7, 11.7; ¹⁹F NMR δ -65.6 (t, J = 10.2 Hz, CH₂CF₃). Anal. Calcd for C₇₂H₁₀₀I₂F₆N₄O₄: C, 59.50; H, 6.94; N, 3.85. Found: C, 59.18; H, 6.97; N, 3.70.

General Procedure for Anion Metathesis. Compounds 5a, 6a, 7a, 8a, and 11a (0.1 mmol) were taken in a 50 mL round-bottomed flask and dissolved in CH₃OH (30 mL). An aqueous solution (3 mL) of LiN(CF₃SO₂)₂, KPF₆, or NaBF₄ (0.12 mmol) was added, and the reaction mixture was stirred for 3 h at room temperature. The solvent was removed and the residue washed with water and extracted with methylene chloride or ethyl acetate. The organic layer

was dried with anhydrous MgSO₄. The solvent was removed in vacuo to obtain desired products.

25,27-Bis[4-(3-butylimidazolium-1-yl)ethoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene bis(trifluoromethanesulfonyl)amide (5b): yield 85%; mp 52 °C; ¹H NMR (CDCl₃) δ 8.46 (s, 2H, -NCHN-), 7.35 (s, 2H, -NCHCHN-), 7.25 (s, 2H, -NCHCHN-), 7.15 (s, 4H, ArH), 6.46 (s, 4H, ArH), 4.81 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.64 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 4.20 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.14 $(t, J = 6.7 \text{ Hz}, 4\text{H}, -\text{NCH}_2\text{CH}_2-), 3.76 (t, J = 7.2 \text{ Hz}, 4\text{H},$ $-CH_2CH_2N-$), 3.20 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 1.86 (m, 8H, -CH₂CH₂CH₂), 1.42 (m, 4H, -CH₂CH₂CH₂), 1.36 (s, 18H, -CH₃), 0.99 (m, 12H, -CH₂CH₃), 0.84 (s, 18H, -CH₃); ¹³C NMR δ 151.7, 146.8, 144.8, 135.4, 135.3, 131.3, 125.9, 124.7, 122.6, 122.5, 119.7 [q, J = 319.2 Hz, N(SO₂CF₃)₂], 77.8, 70.3, 49.9, 49.5, 34.2, 33.6, 31.8, 31.6, 31.2, 31.0, 23.3, 19.3, 13.2, 10.1; ¹⁹F NMR δ -78.9 (N(SO₂CF₃)₂). Anal. Calcd for C₇₂H₉₈F₁₂N₆O₁₄S₄: C, 53.12; H, 6.07; N, 5.16. Found: C, 53.45; H, 6.09; N, 5.14.

25,27-Bis[4-(3-butylimidazolium-1-yl)ethoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene bis(hexafluorophosphate) (5c): yield 82%; mp 80 °C; ¹H NMR (CDCl₃) δ 8.54 (s, 2H, -NCHN-), 7.30 (s, 2H, -NCHCHN-), 7.29 (s, 2H, -NCHCHN-), 7.18 (s, 4H, ArH), 6.47 (s, 4H, ArH), 4.84 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.45 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 4.30 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.21 (t, J = 6.7 Hz, 4H, $-NCH_2CH_2-$), 3.87 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N-$), 3.23 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 1.88 (m, 4H, -CH₂CH₂CH₂), 1.80 (m, 4H, -CH₂CH₂CH₂), 1.38 (s, 18H, -CH₃), 0.96 (m, 12H, -CH₂CH₃); 0.84 (s, 18H, -CH₃); ¹³C NMR δ 152.4, 151.7, 146.6, 144.4, 135.9, 135.4, 131.5, 125.9, 124.5, 122.4, 121.9, 77.8, 70.8, 49.9, 48.5, 34.2, 33.6, 31.6, 31.2, 31.0, 29.2, 22.9, 19.4, 13.3, 9.9; ¹⁹F NMR δ -72.0 (d, J = 711.5 Hz, PF₆); ³¹P NMR δ -144.3 (sep, J = 711.5 Hz, PF₆). Anal. Calcd for $C_{68}H_{98}F_{12}N_4O_4P_2$: C, 61.62; H, 7.45; N, 4.23. Found: C, 61.60; H, 7.49; N, 4.04.

25,27-Bis[**4**-(**3**-butylimidazolium-1-yl)ethoxy]-**26,28**-dipropoxy-**5,11,17,23**-tetra-*tert*-butylcalix[**4**]arene bis(tetrafluoroborate) (**5d**): yield 87%; mp 87 °C; ¹H NMR (CDCl₃) δ 8.87 (s, 2H, -NCHN-), 7.30 (s, 2H, -NCHCHN-), 7.29 (s, 2H, -NCHCHN-), 7.18 (s, 4H, ArH), 6.48 (s, 4H, ArH), 4.89 (t, J = 7.4 Hz, 4H, $-OCH_2CH_2-$), 4.45 (t, J = 8.3 Hz, 4H, $-OCH_2CH_2-$), 4.31 (d, J = 12.9 Hz, 4H, $ArCH_2Ar$), 4.27 (t, J = 7.6 Hz, 4H, $-NCH_2CH_2-$), 3.88 (t, J = 7.6 Hz, 4H, $-CH_2CH_2N-$), 3.22 (d, J = 12.9 Hz, 4H, $ArCH_2Ar$), 1.81–1.93 (m, 8H, $-CH_2CH_2CH_2$), 1.41 (s, 18H, $-CH_3$), 0.97 (m, 12H, $-CH_2CH_3$), 0.84 (s, 18H, $-CH_3$); ¹³C NMR δ 152.6, 151.8, 146.6, 144.4, 136.7, 135.5, 131.5, 125.9, 124.6, 122.1, 121.9, 77.9, 71.0, 49.9, 48.3, 34.2, 33.6, 31.7, 31.6, 31.1, 31.0, 23.1, 19.5, 13.4, 10.1; ¹⁹F NMR δ -151.5 (BF₄). Anal. Calcd for C₆₈H₉₈B₂F₈N₄O₄: C, 67.55; H, 8.17; N, 4.63. Found: C, 67.64; H, 8.26; N, 4.51.

25,27-Bis[4-(3-butylimidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-*tert*-butylcalix[4]arene bis(trifluoromethane-sulfonyl)amide (6b): yield 81%; mp 51 °C; ¹H NMR (CDCl₃) δ 8.84 (s, 2H, -NCHN-), 7.37 (s, 2H, -NCHCHN-), 7.35 (s, 2H, -NCHCHN-), 6.99 (s, 4H, ArH), 6.64 (s, 4H, ArH), 4.39 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.28 (t, J = 7.6 Hz, 4H, -OCH₂CH₂-), 4.20 (t, J = 6.7 Hz, 4H, -OCH₂CH₂-), 4.02 (t, J = 6.7 Hz, 4H, -NCH₂CH₂-), 3.76 (t, J = 7.2 Hz, 4H, -CH₂CH₂N-), 3.17 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.16 (m, 4H, -CH₂CH₂CH₂), 2.04 (m, 4H, -CH₂CH₂CH₂), 1.91 (m, 12H, -CH₂CH₂CH₂), 1.25 (s, 18H, -CH₃), 1.10 (t, J = 3.5 Hz, 6H, -CH₂CH₃); 0.98 (t, J = 7.5 Hz, 6H, -CH₂CH₃), 0.85(s, 18H, -CH₃); ¹³C NMR δ 153.3, 152.7, 144.9, 144.2, 135.2, 134.7, 132.6, 125.3, 124.6, 122.3, 122.9, 126.1,

121.9, 117.6, 113.4 [q, J = 315.0 Hz, N(SO₂CF₃)₂], 77.1, 73.3, 50.0, 49.8, 33.9, 33.6, 31.8, 31.5, 31.2, 31.0, 27.1, 26.6, 23.3, 19.3, 13.1, 10.3; ¹⁹F NMR δ –78.9 [N(SO₂CF₃)₂]. Anal. Calcd for C₇₆H₁₀₆F₁₂N₆O₁₂S₄: C, 55.26; H, 6.47; N, 5.09. Found: C, 55.47; H, 6.42; N, 4.97.

25,27-Bis[4-(3-butylimidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene bis(hexafluorophos**phate**) (6c): yield 78%; mp 107 °C; ¹H NMR (CDCl₃) δ 8.77 (s, 2H, -NCHN-), 7.22 (s, 2H, -NCHCHN-), 7.16 (s, 2H, -NCHCHN-), 7.15 (s, 4H, ArH), 6.47 (s, 4H, ArH), 4.39 (d, J =12.4 Hz, 4H, ArCH₂Ar), 4.31 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.18 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 4.07 (t, J = 6.7 Hz, 4H, $-NCH_2CH_2-$), 3.70 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N-$), 3.15 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.32 (m, 4H, $-CH_2CH_2CH_2$), 2.05 (m, 4H, -CH₂CH₂CH₂), 1.90 (m, 12H, -CH₂CH₂CH₂), 1.37 (s, 18H, $-CH_3$), 1.10 (t, J = 3.5 Hz, 6H, $-CH_2CH_3$), 0.98 (t, J = 7.5Hz, 6H, $-CH_2CH_3$), 0.84 (s, 18H, $-CH_3$); ¹³C NMR δ 153.8, 152.2, 144.9, 143.7, 135.5, 135.3, 131.7, 125.3, 124.2, 121.8, 121.5, 77.6, 73.5, 49.8, 49.5, 33.8, 33.4, 31.5, 31.4, 30.9, 30.8, 26.5, 26.4, 23.4, 19.1, 13.1, 10.2; $^{19}\mathrm{F}$ NMR δ -72.1 (d, J = 711.5 Hz, PF_6); $^{31}\mathrm{P}$ NMR δ -144.2 (sep, J = 711.5 Hz, PF₆). Anal. Calcd for C₇₂H₁₀₆F₁₂N₄O₄P₂: C, 62.59; H, 7.73; N, 4.06. Found: C, 62.79; H, 7.63; N, 3.90.

25,27-Bis[**4**-(**3**-methylimidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-*tert*-butylcalix[**4**]arene bis(trifluoromethane-sulfonyl)amide (7b): yield 88%; mp 199 °C; ¹H NMR (CDCl₃) δ 9.08 (s, 2H, -NCHN-), 7.80 (s, 2H, -NCHCHN-), 7.75 (s, 2H, -NCHCHN-), 7.00 (s, 4H, ArH), 6.77 (s, 4H, ArH), 4.52 (t, *J* = 7.6 Hz, 4H, -OCH₂CH₂-), 4.42 (d, *J* = 12.4 Hz, 4H, ArCH₂Ar), 4.08 (s, 6H, -NCH₃), 3.89 (m, 8H, -CH₂CH₂N(O)-), 3.18 (d, *J* = 12.4 Hz, 4H, ArCH₂Ar), 2.20 (m, 4H, -CH₂CH₂CH₂), 2.05 (m, 8H, -CH₂CH₂CH₂), 1.21 (s, 18H, -CH₃), 1.04 (s, 18H, -CH₃), 0.99 (t, *J* = 7.5 Hz, 6H, -CH₂CH₃); ¹³C NMR δ 154.8, 153.8, 145.1, 144.9, 137.3, 135.1, 133.9, 126.0, 125.7, 124.9, 123.4, 121.4 [q, *J* = 319.4 Hz, N(SO₂CF₃)₂], 77.4, 74.9, 50.3, 36.7, 34.4, 34.3, 31.9, 31.8, 31.6, 27.8, 27.6, 24.0, 10.6; ¹⁹F NMR δ -79.8 [N(SO₂CF₃)₂]. Anal. Calcd for C₇₀H₉₄F₁₂N₆O₁₂S₄: C, 53.63; H, 6.04; N, 5.36. Found: C, 53.40; H, 6.02; N, 5.30.

25,27-Bis[4-(3-methylimidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene bis(hexafluorophos**phate**) (7c): yield 83%; mp 291 °C; ¹H NMR (CDCl₃) δ 9.01 (s, 2H, -NCHN-), 7.79 (s, 2H, -NCHCHN-), 7.73 (s, 2H, -NCHCHN-), 6.90 (s, 4H, ArH), 6.88 (s, 4H, ArH), 4.51 (t, J = 7.6 Hz, 4H, $-OCH_2CH_2-$), 4.42 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.07 (s, 6H, $-NCH_3$), 3.90 (t, J = 6.7 Hz, 4H, $-OCH_2CH_2-$), 3.84 (t, J = 7.2 Hz, 4H, $-CH_2CH_2N-$), 3.18 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.18 (m, 8H, -CH₂CH₂CH₂), 2.05 (m, 4H, -CH₂CH₂CH₂), 1.12 (s, 18H, -CH₃), 1.10 (s, 18H, -CH₃), 0.99 $(t, J = 7.5 \text{ Hz}, 6\text{H}, -C\text{H}_2\text{CH}_3); {}^{13}\text{C} \text{ NMR} \delta 154.4, 154.2, 145.1,$ 144.9, 137.4, 134.6, 134.5, 125.9, 124.9, 124.7, 123.4, 77.6, 74.9, 50.3, 36.6, 34.4, 31.8, 31.7, 31.6, 31.4, 27.8, 27.6, 24.1, 10.6; ¹⁹F NMR δ -72.8 (d, J = 706.9 Hz, PF₆); ³¹P NMR δ -144.1 (sep, J = 706.9 Hz, PF₆). Anal. Calcd for C₆₆H₉₄F₁₂N₄O₄P₂: C, 61.10; H, 7.30; N, 4.32. Found: C, 61.17; H, 7.20; N, 4.21.

25,27-Bis[**4**-(**3**-(**4**,**4**,**4**-trifluorobutyl)imidazolium-1-yl)butoxy]-**26,28-dipropoxy-5,11,17,23-tetra**-*tert*-butylcalix[**4**]arene bis-(trifluoromethanesulfonyl)amide (**8b**): yield 86%; mp 130 °C; ¹H NMR (CDCl₃) δ 8.88 (s, 2H, -NCHN-), 7.42 (s, 2H, -NCHCHN-), 7.33 (s, 2H, -NCHCHN-), 7.03 (s, 4H, ArH), 6.61 (s, 4H, ArH), 4.37 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.33 (m, 8H, -OCH₂CH₂-), 4.03 (t, J = 6.7 Hz, 4H, -NCH₂CH₂-), 3.74 (t, J = 7.2 Hz, 4H, -CH₂CH₂N-), 3.17 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.20 (m, 12H, -CH₂CH₂CH₂), 2.03 (m, 4H, -CH₂CH₂CH₂), 1.90 (m, 4H, -CH₂CH₂CH₂), 1.27 (s, 18H, -CH₃), 1.02 (t, J = 7.3 Hz, 6H, -CH₂CH₃), 0.96 (s, 18H, -CH₃); ¹³C NMR δ 154.1, 153.3, 145.8, 144.9, 136.2, 135.6, 133.1, 127.8 (q, J = 159.5 Hz, CH₂CF₃), 126.1, 125.3, 123.2, 123.0, 120.4 [q, J =319.1 Hz, N(SO₂CF₃)₂], 77.9, 73.9, 50.9, 49.1, 34.7, 34.3, 32.3, 32.0 (q, J = 2.3 Hz, CH₂CH₂CF₃), 31.9, 31.0 (q, J = 29.6 Hz, CH₂CF₃), 27.7, 27.3, 24.1, 23.6, 11.0; ¹⁹F NMR δ -66.2 (t, J =9.6 Hz, CH₂CF₃), -79.1 [N(SO₂CF₃)₂]. Anal. Calcd for C₇₆H₁₀₀F₁₈N₆O₁₂S₄: C, 52.87; H, 5.73; N, 4.78. Found: C, 52.86; H, 5.84; N, 4.64.

25,27-Bis[4-(3-(4,4,4-trifluorobutyl)imidazolium-1-yl)butoxy]-26,28-dipropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene bis-(hexafluorophosphate) (8c): yield 84%; mp 274 °C; ¹H NMR (CDCl₃) δ 8.74 (s, 2H, -NCHN-), 7.33 (s, 2H, -NCHCHN-), 7.24 (s, 2H, -NCHCHN-), 7.14 (s, 4H, ArH), 6.54 (s, 4H, ArH), 4.42 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 4.28 (m, 8H, $-OCH_2CH_2-$), 4.08 (t, J = 6.7 Hz, 4H, $-NCH_2CH_2-$), 3.72 $(t, J = 7.2 \text{ Hz}, 4\text{H}, -\text{CH}_2\text{CH}_2\text{N}-), 3.19 \text{ (d}, J = 12.4 \text{ Hz}, 4\text{H},$ ArCH₂Ar), 2.32-1.92 (m, 20H, -CH₂CH₂CH₂), 1.36 (s, 18H, $-CH_3$, 1.11 (t, J = 3.5 Hz, 6H, $-CH_2CH_3$), 0.90 (s, 18H, $-CH_3$); ¹³C NMR δ 154.7, 153.1, 145.8, 144.7, 136.5, 136.2, 132.6, 126.2, 125.2, 122.9, 122.5, 126.9 (q, J = 274.4 Hz, CH₂CF₃), 78.3, 74.3, 50.7, 49.0, 34.7, 34.2, 32.4, 32.1 (q, J = 3.3 Hz, CH₂CH₂CF₃), 31.8, 30.8 (q, J = 29.5 Hz, CH₂CF₃), 27.3, 27.0, 24.3, 23.3, 11.1; ¹⁹F NMR δ -66.1 (t, J = 10.2 Hz, CH₂CF₃), -71.8 (d, J = 710.9Hz, PF₆); ³¹P NMR δ –144.2 (sep, J = 711.2 Hz, PF₆). Anal. Calcd for C₇₂H₁₀₀F₁₈N₄O₄P₂: C, 58.06; H, 6.77; N, 3.76. Found: C, 58.43; H, 6.82; N, 3.65.

25,27-Bis[**4**-(**3**-butylimidazolium-1-yl)butoxy]-**5,11,17,23-tetra***tert***-butylcalix[4**]arene-crown-**5** bis(trifluoromethanesulfonyl)amide (**11b**): yield 80%; mp 38 °C; ¹H NMR (CDCl₃) δ 8.90 (s, 2H, -NCHN-), 7.60 (s, 2H, -NCHCHN-), 7.36 (s, 2H, -NCHCHN-), 7.15 (s, 4H, ArH), 6.45 (s, 4H, ArH), 4.31-4.16 (m, 20H), 3.80 (bs, 12H), 3.17 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.21 (m, 4H, -CH₂CH₂CH₂), 2.00 (m, 4H, -CH₂CH₂CH₂), 1.86 (m, 4H, -CH₂CH₂CH₂), 1.41 (m, 4H, -CH₂CH₂CH₂), 1.36 (s, 18H, -CH₃), 0.96 (t, J = 7.5 Hz, 6H, -CH₂CH₃), 0.83 (s, 18H, -CH₃); ¹³C NMR δ 154.6, 151.8, 145.4, 144.5, 135.4, 135.1, 131.4, 125.7, 124.7, 122.8, 122.5, 115.6 [q, J = 318.8, N(SO₂CF₃)₂], 74.6, 72.5, 71.2, 70.8, 70.0, 49.9, 34.1, 33.6, 31.9, 31.7, 31.1, 30.8, 27.9, 27.2, 19.4, 13.2; ¹⁹F NMR δ -78.9 (N(SO₂CF₃)₂). Anal. Calcd for C₇₈H₁₀₈F₁₂N₆O₁₅S₄: C, 55.28; H, 6.31; N, 4.87. Found: C, 55.29; H, 6.44; N, 4.66.

25,27-Bis[4-(3-butylimidazolium-1-yl)butoxy]-5,11,17,23tetra-*tert***-butylcalix[4]arene-crown-5 bis(hexafluorophosphate)** (**11c):** yield 82%; mp 56 °C; ¹H NMR (CDCl₃) δ 8.71 (s, 2H, -NCHN-), 7.55 (s, 2H, -NCHCHN-), 7.32 (s, 2H, -NCHCHN-), 7.14 (s, 4H, ArH), 6.44 (s, 4H, ArH), 4.29-4.14 (m, 20H), 3.79 (m, 12H) 3.16 (d, J = 12.6 Hz, 4H, ArCH₂Ar), 2.19 (bs, 4H, -CH₂CH₂CH₂), 1.99 (bs, 4H, -CH₂CH₂CH₂), 1.86 (m, 4H, -CH₂CH₂CH₂), 1.35 (s, 18H, -CH₃), 1.28 (m, 4H, -CH₂CH₂CH₂), 0.93 (t, J = 7.6 Hz, 6H, -CH₂CH₃), 0.82 (s, 18H, -CH₃); ¹³C NMR δ 154.6, 151.9, 145.3, 144.4, 135.1, 135.0, 131.4, 125.7, 124.6, 122.7, 122.4, 74.6, 72.5, 71.1, 70.8, 70.2, 69.9, 49.8, 34.1, 33.5, 31.8, 31.6, 31.0, 30.8, 27.7, 27.2, 19.3, 13.2; ¹⁹F NMR δ -72.0 (d, J = 711.5 Hz, PF₆); ³¹P NMR δ -144.1 (sep, J =711.5 Hz, PF₆). Anal. Calcd for C₇₄H₁₀₈F₁₂N₄O₇P₂: C, 61.06; H, 7.48; N, 3.85. Found: C, 61.45; H, 7.49; N, 3.65.

Acknowledgment. We gratefully acknowledge the support of the National Science Foundation (Grant CHE-0315275) and AFOSR (Grant F49620-03-1-0209).

IC049041C